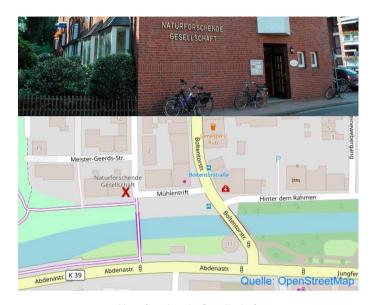
"100 Jahre Quantenphysik"

Quantum 2025 – 100 Jahre sind erst der Anfang...

Die Formulierung der Quantenmechanik im Jahr 1925 hat eine bleibende Grundlage für unser physikalisches Verständnis der Natur gelegt. 100 Jahre später, im Jahr 2025, wirkt sich die Quantenmechanik auf alle Bereiche unserer Kultur, Wissenschaft, Technologie und Kunst aus. Das wird 2025 in aller Welt gefeiert!

Für die Umsetzung des durch die UN ausgerufenen International Year of Quantum Science and Technology in Deutschland hat die Deutsche Physikalische Gesellschaft DPG die Federführung. Unter dem Motto "Quantum 2025 – 100 Jahre sind erst der Anfang…" finden verschiedenste Veranstaltungen und Aktivitäten statt (www.quantum2025.de).

Die Naturforschende Gesellschaft zu Emden von 1814 beteiligt sich mit einer Vortragsreihe zum Thema 100 Jahre Quantenphysik.


Die Arbeitsgruppe Physik der Naturforschenden Gesellschaft befasst sich separat mit dem Thema Quantenphysik. Die Treffen finden alle 14 Tage sonntags um 17:00 Uhr statt. Der Einstieg ist jederzeit möglich.

Wir freuen uns auf Ihren Besuch. Der Eintritt ist grundsätzlich frei. Über eine Spende in unserem aufgestellten Sparschwein würden wir uns freuen. Gern können Sie uns auch durch eine Mitgliedschaft unterstützen. Das Mitgliedsformular schicken wir Ihnen auf Anfrage zu. Sie finden es auch auf unserer Webseite.

Das Direktorium

Aktivitäten

Auf unserer Internetseite www.nfg-emden.de finden Sie Informationen über das weitere Programm und die Aktivitäten der Gesellschaft.

Naturforschende Gesellschaft zu Emden von 1814 Grasstraße 1 (Ecke Mühlentrifft) 26721 Emden

Telefon: 04921 / 28135 E-Mail: info@nfg1814.de Internetauftritt: www.nfg-emden.de

Konto bei der Sparkasse Emden IBAN DE07 2845 0000 0000 0442 22 BIC BRLADE21EMD

Ostfriesische Volksbank eG

Mit freundlicher Unterstützung

Naturforschende Gesellschaft zu Emden von 1814 Grasstraße 1 in Emden

100 Jahre Quantenphysik

Laser-Quanteninterferenz an einem CCD Chip

Bild: St.-G. Koziolek

Vortragsreihe 2025 Januar bis Juni

Kooperationspartner

V.i.s.d.P.: St.-G. Koziolek Stand: 12/2024

Mittwoch, 12. Februar 2025 um 19:00 Uhr Ort: Naturforschende Gesellschaft. Grasstraße 1

Atom-Modelle

Bild: Privat

Stephan-G. Koziolek, Direktor NfG

Elektrotechnische Berufsausbildung in den Bereichen Nachrichtentechnik, Elektrogerätemechanik und Elektrotechnik allgemein. Studium Physiktechnik mit Forschungsfeld "Korrelationen von Naturkonstanten". Leiter der Arbeitsgruppe Physik.

Elektrotechniker bei Volkswagen in der Werk-Technik. Mitglied der DPG und des Bundesfördervereins MNU.

Der Weg zur Quantenphysik

Der Vortrag behandelt die historischen Wegstrecken, die den Begriff des Atom-Modells umschlingen. Demokrit prägte das Wort "Atomos". Damit begann der Versuch, ein kleinstmögliches Teilchen zu fassen. Erst um 1800 brachte die weitere Forschung am Atom-Modell von John Dalton neue Erkenntnisse. J. J. Thomson, E. Rutherford, N. Bohr und A. Sommerfeld führten die Forschung bis hin zur Quantenphysik mit dem wellenmechanischen Atom-Modell oder auch Orbitalmodell von Erwin Schrödinger und Werner Heisenberg.

Mittwoch, 26. Februar 2025 um 19:00 Uhr Ort: Naturforschende Gesellschaft, Grasstraße 1

Zur Konstitution elektrischer Ladungen

Dipl.-Phys. Andreas Makus

1970 in Hildesheim geboren. Studium der Physik an den Universitäten Göttingen u. Oldenburg mit Schwerpunkt Wissenschaftsgeschichte. Seit 2003 Studienrat für Mathematik und Physik am Max-Windmüller-Gymnasium.

Bild: Privat

Ehrenhafts Suche nach kleinsten Ladungen

Zu Beginn des 20. Jahrhunderts war die Frage, ob die elektrische Ladung eine kontinuierliche oder quantisierte Größe sei, noch offen. Felix Ehrenhafts Experimente an der Universität Wien sprachen zunächst für die Existenz einer kleinsten elektrischen Ladung. Im weiteren Fortgang seiner Forschungen fand Ehrenhaft allerdings Hinweise auf Ladungen, welche deutlich kleiner als die vermutete Elementarladung zu sein schienen. Damit befanden sich die Ehrenhaftschen Messungen im Widerspruch zu denen Robert Millikans, welcher 1923 unter anderem für seinen Nachweis der Elementarladung den Nobelpreis verliehen bekommen hat.

Im Vortrag wird die Ehrenhaftsche Methode anhand eines rekonstruierten Versuchsaufbaus ausführlich dargestellt.

Montag, 24. März 2025 um 19:00 Uhr Ort: Naturforschende Gesellschaft, Grasstraße 1

Die Körnigkeit der Elektrizität

Prof. Dr. rer. nat. Peter Heering

Studium der Physik und Chemie in Oldenburg. Promotion im Fachbereich Physik der Carl-von-Ossietzky Universität Oldenburg. Habilitation in Geschichte der Naturwissenschaften in Hamburg. Professor für Physik und ihre Didaktik und Geschichte an der Europa-Universität Flensburg. Ehrenmitglied der Naturforschenden Gesellschaft.

Millikans Experimente zur Elementarladung

Der Wert der Elementarladung ist eine der wesentlichen Naturkonstanten; gleichzeitig ist sie die kleinste bei stabilen Teilchen auftretende Ladung. Die Bestimmung ihres Wertes ist eng mit dem Namen Robert A. Millikan verbunden, der u.a. für diese Arbeit mit dem Nobelpreis für Physik 1923 ausgezeichnet wurde. Im Vortrag werden die Arbeiten Millikans vorgestellt, wobei auch auf die Analyse der Experimente mit einem quellengetreuen Nachbau zurückgegriffen wird.

Mittwoch, 23. April 2025 um 19:00 Uhr Ort: Naturforschende Gesellschaft, Grasstraße 1

Der Stern-Gerlach-Versuch

Prof. Dr. rer. nat. Rüdiger Götting

1954 in Eschwege geboren. Studierte nach dem Abitur an der Universität Göttingen.1984 Promotion in Göttingen mit einer Arbeit zu Molekularstrahl-Experimenten. Arbeitete ab 1985 am Max-Planck-Institut für Strömungsforschung.
Seit 1995 Professor an der Hochschule Emden/Leer

Bild: Privat

Entdeckung der Richtungsquantelung

Der Stern-Gerlach-Versuch ist ein wissenschaftshistorisch sehr wichtiges Experiment aus dem Jahr 1922. Otto Stern startete die Versuche und Walter Gerlach gelang im Folgenden die entscheidenden Messungen an der Universität Frankfurt. Es gelang mit diesem Versuch der Nachweis der sogenannten "Raumquantelung".

Der Stern-Gerlach-Versuch war nur durch eine revolutionäre neue Theorie – die Quantenmechanik – zu erklären. Das Experiment ging hier der Theorie voran.

Es ist aber auch sehr spannend, den Stern-Gerlach-Versuch von 1922 historisch einzuordnen: vier Jahre nach Ende des ersten Weltkriegs, der Beginn der Hyperinflation, die Ermordung Walter Rathenaus...

Mittwoch, 21. Mai 2025 um 19:00 Uhr Ort: Naturforschende Gesellschaft, Grasstraße 1

Der Quanten-Hall Effekt...

Bild: Privat

Prof. Dr. rer. nat. Karl Heinz Weiler

Studium RWTH Aachen, Schwerpunkt Festkörperphysik, Zyklotronresonanzabsorption an Halbleitern bei tiefen Temperaturen. MPI für Aeronomie (Inst. für Sonnensystemforschung), Promotion Universität Göttingen, Physik und Chemie atmosphärischer Spurenstoffe, Gasmesstechnik in der Stratosphäre. Gasmesstechnik in Industrie und Umweltbereich, Sensortechnik, selbständig als beratender Physiker, physikal.-chem. Apparatebau. Seit 1990 Prof. an der Hochschule Emden/Leer.

...und die Naturkonstanten

Der Quanten-Hall-Widerstand, ein ganzzahliger Bruchteil der von-Klitzing-Konstanten **R**K, hängt nur von der Planck-Konstanten **h** und der Ladung des Elektrons **e** ab. Der Nobelpreisträger von 1985, Klaus von Klitzing, entdeckte diesen Effekt 1980. Tiefe Temperaturen (um 4 Kelvin) und hohe Magnetflussdichten (bis etwa 20 Tesla) waren dazu erforderlich. Der Vortrag von Professor Weiler bietet dazu einen experimentellen und geschichtlichen Hintergrund dieser Halbleiter-Physik bis heute, mit der Revision des SI-Systems seit Mai 2019 und der Stabilität der Naturkonstanten.

Mittwoch, 18. Juni 2025 um 19:00 Uhr Ort: Naturforschende Gesellschaft, Grasstraße 1

MASER - LASER - ATOMINTERFEROMETRIE

Prof. Dr. rer. nat. Walter Neu

Studium an der Johannes-Gutenberg-Universität Mainz. Promotion am CERN/Genf (Europäische Organisation für Kernforschung). Walter Neu ist Direktor des Instituts für Laser und Optik (ILO) und des Instituts für Hyperloop Technologie (IHT), Mitbegründer u.a. des "Medizinischen Zentrums für Laser und Minimal Invasive Therapie e.V." an der Universität Göttingen. Seit 1994 Professor an der Hochschule

Licht und Quantenphysik – ein Widerspruch in sich?

Quantenphysik mit Licht hat den Aufbau der Atome entschlüsselt, gibt den Takt unserer Zeitmessung an, vermisst das Universum und die Gravitationskraft, lässt uns in Lichtgeschwindigkeit kommunizieren und kann mit ultrakurzen Pulsen Elektronen zwischen zwei Quantenzuständen beobachten. Erörtert wird, warum es schwer war, einen Laserblitz zu erzeugen und somit den Weg zu einem Atomlaser zu ermöglichen. Atome können genauso "spukhaft" verschwinden, wie aus zwei Laserstrahlen Dunkelheit entstehen kann. Über 23 Nobelpreise zeichnen die Quantenoptik aus. Der Vortrag stellt Anwendungen und Perspektiven vor.